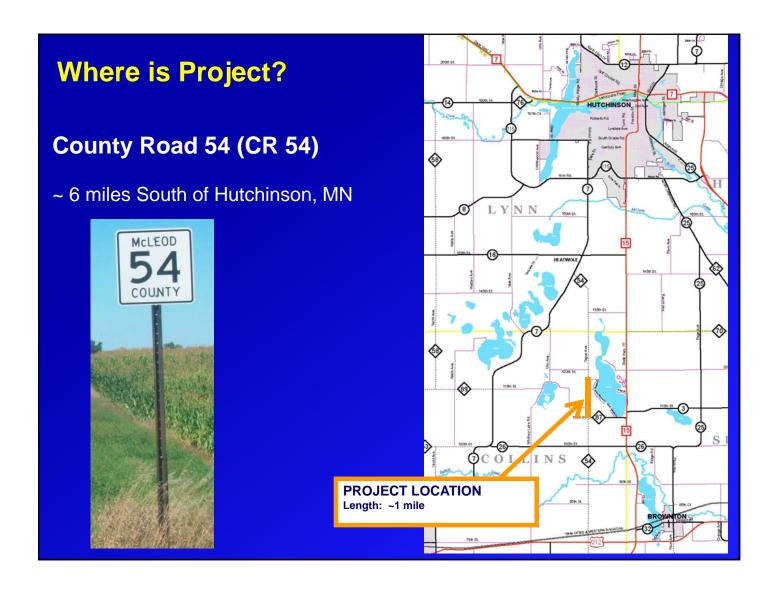
Cement Stabilized Base & Chipseal "County Road 54"

NRRA Pavement Conference May 24, 2017

John Brunkhorst, PE - McLeod County Engineer

Dave Rettner, PE - American Engineering Testing Inc.


Topics

- 1. Background
- 2. Project Overview
- 3. Construction Highlights
- 4. Design Process
- 5. Construction and Performance Testing
- 6. Costs
- 7. Lessons Learned
- 8. Next Steps

Where is McLeod County?


Located approximately 60 miles west of the Twin Cities

BACKGROUND

County Road 54

- Gravel Road
- Primarily serves rural housing development
- Seasonal agricultural traffic
- ~ 200 ADT
- County Funded (non State Aid route)

BACKGROUND

CR 54 Issues

- ~\$5,000 Annually for Dust Control (CaCl₂)
- Washboards (due to speed/braking)
- Frequent Blading Required
- No Funding for traditional base and surfacing

Goals for CR 54

- Dust Free Road
- Washboard Free
- Stand up to Agricultural Traffic
- Cost Effective

BACKGROUND - Past Efforts

2014 Prime/Seal Project

- CR 54
- Township Housing Development
- Nearby County Park
- Portions of CR 54 began to break up in fall

• CR 54

2016

Cement Stabilized Full Depth Reclamation (CSFDR) Double Chip Seal & Fog Seal

Project Goal – Find the most cost content and stabilization depth.

- 4 Test Sections
- Varying Cement Contents
- Varying Stabilization Depths
- Short Section of Single Chip Seal
- 4% Cross Slope

optimal cement

PROJECT OVERVIEW

	Section 1	Section 2	Section 3	Section 4
Cement Content	8 %	7 %	6 %	5 %
Stabilization Depth	10"	10"	8"	8"
Tack Coat	1300'	1300'	1300'	1300'
Double Chip Seal	1300'	1300'	1300'	1200'
Single Chip Seal	-	-	-	100'
Fog Seal	1300'	1300'	1300'	1300'

CONSTRUCTION

Cement Incorporation

CONSTRUCTION

Cement Incorporation

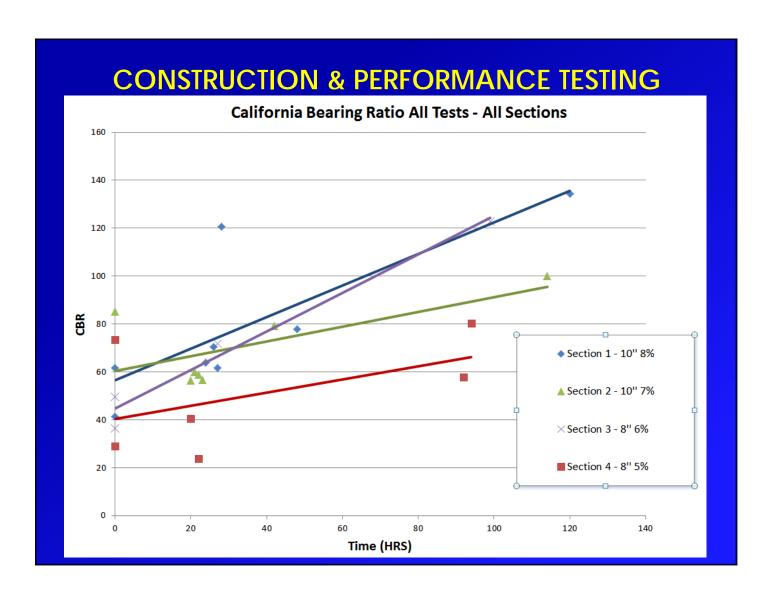
DESIGN PROCESS

- Two mix designs
 - One for 8 inch SFDR section, one for 10 inch SFDR section
 - Relative proportions of gravel to subgrade were different due to reclamation depths
 - 8" Section Proctor 127.3 pcf at 9.1% moisture
 - 10" Section Proctor 122.6 pcf at 10.5% moisture
 - Target Unconfined Compressive Strength of 250-300 psi at 14 days

DESIGN PROCESS

- Two mix designs
 - 8" Section
 - 5% Cement Content at OMC
 - 272 psi UCS
 - 10" Section
 - 7% Cement Content at OMC
 - 267 psi UCS

DESIGN PROCESS


- After lab work was completed the roadways were graveled and graded, so the roadway had more gravel than the mix designs contained.
- Likely result was going to be higher strength than the original mix design

CONSTRUCTION & PERFORMANCE TESTING

- Field Testing
 - Nuclear Gauge for Moisture and Density
 - Water was added to soil as necessary to achieve (or approach) optimum moisture content
 - Rolling Patterns were performed
 - Several Each Day to account for variability in the roadway materials
 - Density and moisture was checked during compaction
 - Density was typically >98% of rolling pattern density

CONSTRUCTION & PERFORMANCE TESTING

- Field Testing
 - DCP testing was performed post construction for strength verification
 - Target strengths (minimums)
 - CBR of 20 in 2 days
 - CBR of 50 in 7 days
 - Strengths measured greatly exceeded the targets

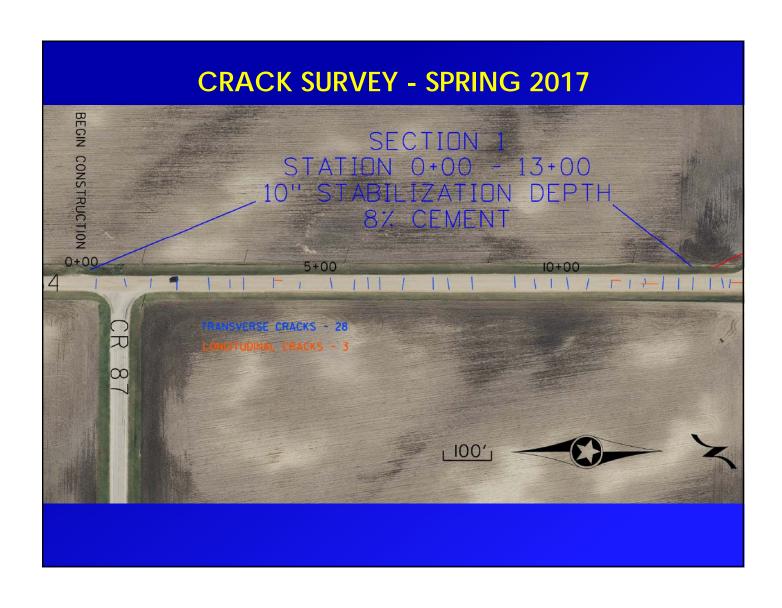
CONSTRUCTION & PERFORMANCE TESTING

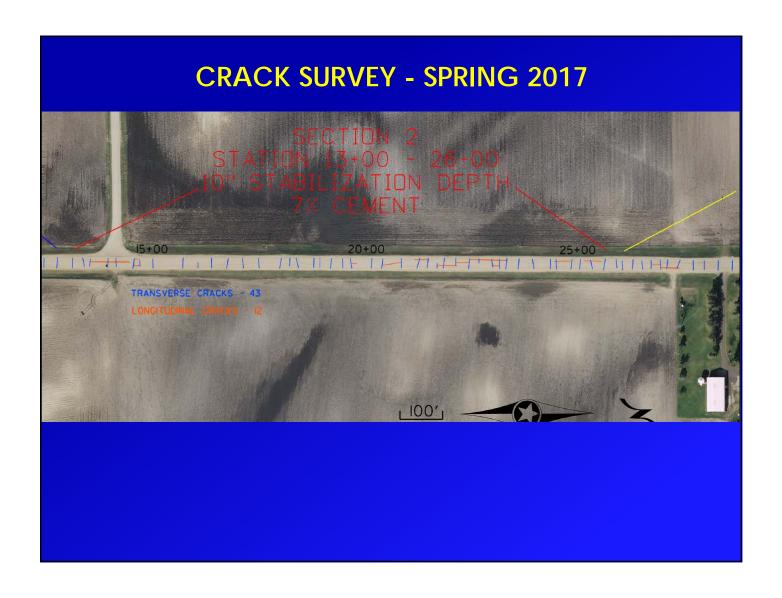
- Performance Testing
 - Ground Penetrating Radar
 - Falling Weight Deflectometer
 - IRI
- Performed October, 2016

CONSTRUCTION & PERFORMANCE TESTING

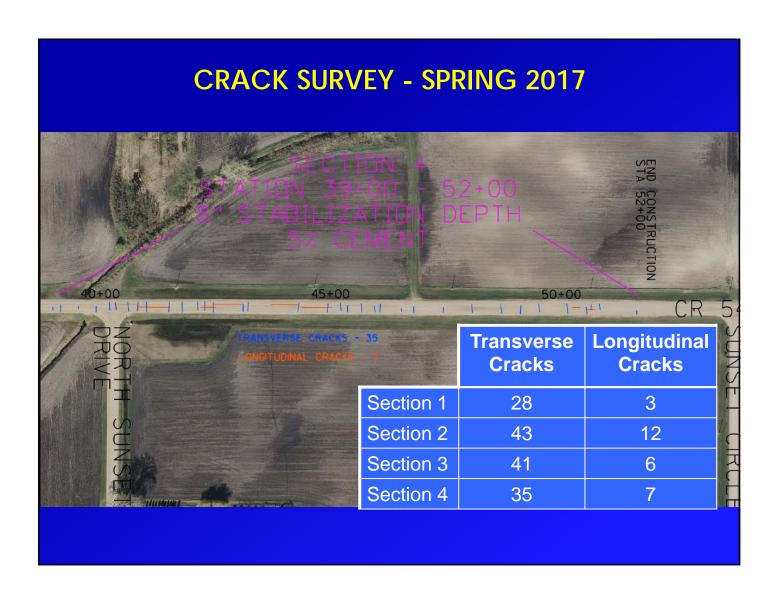
- GPR Sections were constructed thicker than plan
 - 10 inch sections
 - Section 1 14.5 inches
 - Section 2 14.6 inches
 - 8 inch Sections
 - Section 3 11.1 inches
 - Section 4 10.1 inches

CONSTRUCTION & PERFORMANCE TESTING


- FWD Results
 - Significant strength increase over non-stabilized roadway – all stabilized sections > 10 tons
 - No direct correlation between cement content and strength


Section	Length	Thickness	Modulus	Load Capacity
	feet	in.	ksi	tons/axle
South Gravel	1300	4.8	16.7	4.8
1	1300	14.5	362.1	20.0
2	1300	14.6	560.9	21.8
3	1300	11.1	438.6	19.0
4	1300	10.1	280.4	10.8
North Gravel	1300	7.6	16.4	5.4


CONSTRUCTION & PERFORMANCE TESTING


- Ride Quality Results
 - IRI of stabilized sections was significantly higher than the unstabilized gravel roadway on both ends of the project

Section	Length	IRI
	feet	in./mi.
South Gravel	1300	84.8
1	1300	293.2
2	1300	237.4
3	1300	204.4
4	1300	210.9
North Gravel	1300	149.6

	COSTS	
CSFDR	Cost/Mile	Cost/SY
• Cement	\$ 51,300	\$ 3.12
Stabilization	\$ 16,300	\$ 0.99
Laydown/Compaction *	\$ 15,000	\$ 0.93
CHIP SEAL		
Tack Coat	\$ 3,100	\$ 0.19
• 3/8" Seal	\$ 22,900	\$ 1.40
• 1/4" Seal	\$ 20,000	\$ 1.22
Fog Seal	\$ 3,300	\$ 0.2 <u>0</u>
TOTAL	~\$ 132,000	~\$8
* County Roller Operated		

LESSONS LEARNED

Subgrade

- Need Good Drainage
- Continue Centerline Tile

Residential Driveways

- Figure out Transition
- Potential Plowing Damage

Future Projects

- No County Operators, One Contract
- Ensure Samples Match Existing Conditions
- 2nd Seal Year 2 or later

NEXT STEPS

Finish CR 54

- 1 mile 2017
- 2 miles 2018

Continue to Monitor

More Planned

~14 Miles in 5-Year Plan

Good Tool in Tool Box for Right Road

\$140,000/mile vs. Traditional Paving ~\$450,000+

QUESTIONS?

John Brunkhorst, PE County Engineer

Dave Rettner, PE President/Principal

McLeod County Hwy Dept.

American Engineering Testing, Inc.

(320) 484-4321 www.co.mcleod.mn.us/highway john.brunkhorst@co.mcleod.mn.us

(651) 755-5795 www.amengtest.com drettner@amengtest.com

